Math 53: Multivariable Calculus

Worksheet for 2020-04-17

Conceptual Review

Question 1. In the below, *f*, *g* denote scalar fields while **F**, **G** denote vector fields. Which of these expressions do not make sense? For the ones that do make sense, do they output a scalar field or a vector field?

- (a) $\operatorname{grad} f$
- (b) curl(div **F**)
- (c) grad(div(curl F))
- (d) $\nabla(\nabla \times f)$
- (e) $\nabla \cdot (\nabla \times (f\mathbf{G}))$
- (f) $\nabla \cdot (\nabla f \times \nabla g)$

Question 2. Of the expressions that do make sense above, are there any that are *always* equal to zero (either the zero scalar field or the zero vector field)?

Hint: The vector identity $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) - \mathbf{F} \cdot (\nabla \times \mathbf{G})$ may be useful for one of the expressions.

Problems

Problem 1. Let *n* be a constant, let *r* denote the scalar field $\sqrt{x^2 + y^2 + z^2}$, and let **r** denote the vector field $\langle x, y, z \rangle$. Compute the following:

(a) $\nabla(r^n)$ (b) $\nabla \times (r^{n-1}\mathbf{r})$ (c) $\nabla \cdot (r^{n-1}\mathbf{r})$.

For part (c), what value of *n* makes the answer equal to zero?