Worksheet for 2020-04-17

Conceptual Review

Question 1. In the below, f, g denote scalar fields while F, G denote vector fields. Which of these expressions do not make sense? For the ones that do make sense, do they output a scalar field or a vector field?
(a) $\operatorname{grad} f$
(b) $\operatorname{curl}(\operatorname{div} \mathbf{F})$
(c) $\operatorname{grad}(\operatorname{div}(\operatorname{curl} \mathbf{F}))$
(d) $\nabla(\nabla \times f)$
(e) $\nabla \cdot(\nabla \times(f \mathbf{G}))$
(f) $\nabla \cdot(\nabla f \times \nabla g)$

Question 2. Of the expressions that do make sense above, are there any that are always equal to zero (either the zero scalar field or the zero vector field)?

Hint: The vector identity $\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{G})$ may be useful for one of the expressions.

Problems

Problem 1. Let n be a constant, let r denote the scalar field $\sqrt{x^{2}+y^{2}+z^{2}}$, and let \mathbf{r} denote the vector field $\langle x, y, z\rangle$.
Compute the following:
(a) $\nabla\left(r^{n}\right)$
(b) $\nabla \times\left(r^{n-1} \mathbf{r}\right)$
(c) $\nabla \cdot\left(r^{n-1} \mathbf{r}\right)$.

For part (c), what value of n makes the answer equal to zero?

